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Summary. Reduced density operators of the p-th order adapted to irreducible 
representations of the permutation group are expressed in terms of spin-adapted 
p-electron creation and annihilation operators. Simple rules for expressing 
products of two density operators as linear combinations of the symmetry- 
adapted density operators and formulas for calculating matrix elements of these 
operators are derived. The results may be useful in many-body perturbation 
theory, in coupled cluster methods, in theory of spin-adapted reduced Hamiltoni- 
ans, and in statistical theories of spectra. 
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I Introduction 

Spin-free p-order reduced density operators (p-RDOs) [1] also referred to as 
excitation operators [2], replacement operators [3-5] and, in the first-order case, 
the unitary group generators [6], proved to be most useful in designing algorithms 
for evaluation of matrix elements in many areas of the N-electron system theory. 
Until recently, the properties of p-RDOs with p > 2 were investigated rather 
scarcely Il]. However, growing interest in extending the many-body perturbation 
theory and the coupled cluster expansions up to higher orders [2, 5, 7], develop- 
ments in the theory of spin-adapted reduced Hamiltonians [8-11], and in the 
statistical theories of spectra [ 12] stimulated more research work on properties of 
the high-order p-RDOs [2, 5, 10, 11, 13]. 

In a recent work by Kutzelnigg [2], the importance of the permutation 
symmetry adaptation has been emphasized and methods for obtaining the 
symmetry-adapted operators have been developed. In the same paper a generaliza- 
tion of the Wick theorem allowing one to express products ofp-RDOs as sums of 
singlep-RDOs was given. A graphical representation of the Wick theorem allowing 
for an easy evaluation of products of the primitive (non-adapted) p-RDOs was 
presented in our recent paper [ 13]. The p-RDOs there are represented by means of 
p-electron creation and annihilation operators allowing for simple evaluation of 
their traces in finite-dimensional, spin-adapted, and antisymmetric Hilbert spaces. 
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In the present note we give a general procedure for constructing symmetry- 
adapted p-RDOs from spin-adapted p-particle creation and annihilation opera- 
tors. The procedure is an alternative to the one given by Kutzelnigg [2]. 
Moreover, a simple scheme which aUows one to express products of RDOs as 
linear combinations of the symmetry-adapted RDOs is outlined. Finally, formu- 
las for calculating matrix elements of these operators are derived. 

2 Spin-atlapted seeond quanfization operators 

A primitive p-electron creation operator is defined as: 

-+  - b  + b + . b .  +" (1) B(ili2. . . /p)Cr 1 0 " 2 . . . O ' p  ~ i l a l  i 2 o ' 2  • tpap~ 

where (i~i2... ip) stands for orbitals, ala2.. ,  ap for the one-electron spin func- 
tions and b;+~ are the familiar one-electron creation operators. The notation is 
further generalized to describe p-particle states with a specific spin-coupling 
scheme. Thus, Bff i  I 'SM~ denotes a spin-adapted creation operator of a 

t, I 2 . . . p !  

p-particle state. The spin-coupling scheme is labelled by 2 and S, M denote the 
quantum numbers corresponding to the p-particle spin operators S 2 and Sz, 
respectively. The spin-adapted creation operators may be expressed in terms of 
the primitive ones using the Clebsh-Gordan  expansion [13, 14]. 

B + « , - ~ . . .  «,  w ~  + }, (2) { ( i l i 2 . . . i p ) S M ~ } - ~ { C s M , ~  J[  (i l i2. . . ip)al¢r 2 . . . .  p 
fgl ¢r2 where {CsM ~ . . . .  v} is the unitary matrix of the Clebsh-Gordan  coefficients. 

A similar expansion may be used to construct spin-adapted p-particle 
operators from products of the spin-adapted t- and u-particle operators, where 
p = t + u. For  example, if t = u = 2, then: 

Sl  s 2 

B(+b«a)SM*~~= = E E (SMSlS2 [SlmlSZm2)B~ab)slmlB(+d)s2m2 , (3) 
m l =  - - s  1 m 2 =  - - s  2 

where sl, s2 = 0, 1 and (SMsls2 [ slmls2m2) are the Clebsh-Gordan  coefficients 
for this specific coupling scheme. A generalization of Eq. (3) for arbitrary t and 
u is straightforward. 

It is convenient to introduce a more compact notation for the spin-adapted 
creation and annihilation operators. We set: 

B + B + a,SMJ. ~~- ( i l i 2 " ' "  ip)SM.a, (4) 
where « stands for the string of the orbital indices. The corresponding annihila- 
tor is B=.SM,. 

A spin-adapted creation operator, acting upon the vacuum state creates an 
antisymmetric, p-electron spin eigenfunction corresponding to a given orbital 
configuration, i.e.: 

B;s ,~~ 10> = Ic, SM~ > 
Hence, in the spin and in the orbital spaces the spin-adapted creation/annihila- 
tion operators corresponding to given a, S, M form bases for the pertinent 
irreducible representations of the symmetric group S v of p! elements ~. 

i In order to simplify the discussion we assume, for the time being, that all indices in the « string are 
different. A generalization for the case of repeated indices foUows the same line as in the theory of 
spin functions (see e.g. [16, 17]) 
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In the coordinate representation Ic, S M 2 )  corresponds to a spin-adapted 
antisymmetrized product of orthonormal spin-orbitals [ 15]" 

T(r, a)~SM; = (r, a Ic, s m 2 ) .  (5) 

If ~ä~/~~ denote a permutation ~ acting on the spin/orbital coordinates of 
electrons, then the Pauli principle gives: 

Br~cr TBM2 = ~(~) ~IT'#}M2 (6) 

where e(~) is the pafity of ~.  The transformation properties of the orbital and 
of the spin parts of 7S~MX implies [16, 17] that: 

f ( S,p) 
o~ p ct 

B~~JSM2 ~- E VS(~)P2~T-#SMp (7a) 
,u=l 

and 
f(S,p) 

~ r  ~J ~SM2 E P q- c~ = Us(N)ù;TSMù (7b) 
,u=l 

where V p and U p are matrices of mutually dual irreducible representations of S e. 
Their dimension, f ( S ,  p), is given by the Heisenberg formula [17]: 

f ( S , p )  2 S + 1 (  p + l  
= p + l  \ p / 2 - S ] "  (8) 

The total spin quantum number designates the pertinent representation and 
VPs/UP s correspond to the Young diagrams containing at most two rows/ 
columns. The representations V~ and U~ are related according to 
U~(N) = e(N)V~(N-1) + [17]. We assume that T~MX form an orthonormal set. 
Then the representation matrices are orthogonal, i.e. 

Uff(~) = e(~) Va (~'). (9) 

Since using the occupation number rather than the coordinate representation 
appears to be more convenient, we introduce permutation operators ~ ù / ~ ,  
acting on the spin/orbital labels rather than on the corresponding electron 
coordinates. Taken into account that 

the both kinds of the operators, when considered as elements of an abstract 
permutation group Sp, are related as 

The transformation properties of T~M ~ expressed in Eq. (7) imply that 
f(S,p) 

+ 
BaB«,sM,t  E P - 1 + = V s ( ~  )ù2B«,sM~, (12a) 

/x=l 

f(S,p) 
B r  B : S M 2  E P -1 + + = U s ( ~  ),~.B«.sM~. (12b) 

,u=l 

Hereafter, wherever it does not lead to any confusion, we omit the subscripts r 
or a in the symbols denoting permutation operators. 
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3 Symmetry-adapted p-RDOs 

A primitive p -RDO is defined as [2, 13]: 

p Æi l  iß . . . ip = 2 b +  h +  . . . .  
- - a l a 2 . , . a  p 11¢71vl262 bi~,pb%%., ba2«2ba,« 1 • (13) 

0 - 1 o ' 2 . . . 0 - p  

In particular, the 1-RDO: 

1 i = E i a = ~ b +  (14) Ea i0- b~0- 
0- 

is the unitary group generator [6] also known as the replacement operator or the 
shift operator [3, 4]. If i = a then Eù is the orbital occupation number operator. 
Its eigenvalues n~ = 0, 1, 2 are the occupation number of the orbital i. 

Then, according to [ 13]: 

PE~ = ~ /~+ (15a) ~,0-10"2 . . . ap/'~fl,O" l 0- 2 . . . 0"p 
0 " 1 0 - 2 . . . 0 " p  

p/2 S f ( S , p )  

= Y~ Y~ y 8~+sM~8~.«M~ (l»b) 
S =  S m i  n M =  - - S  2 =  1 

where Smin = 0 i fp  is even and Smin = 1/2 i fp  is odd. Equations (15) express the 
fact that for a given pair of the orbital index strings («, fl) the sets of all 
spin-adapted and of all non-adapted creation/annihilation operators span the 
same space. 

The action of a permutation operator ~ on PE} is defined as: 

BPE~ = PE~ «. (16a) 

The Hermitean-conjugate equation reads: 

PE~~ + = PESt. (16b) 

The symmetry-adapted p-RDO,  following Kutzelnigg [2], is defined as: 

tSlE«~ùl = ~s pw« (17) BM ",~v +--'~ 
where: 

p s  _ f  ( S, p) 
p! ~ U~ (,@)~,«_@. (18) 

peSp 

The operator p s  is, in fact, a shift rather than a projection operator. If  we used 
a projection operator: 

Ps - f ( s ' p )  Y~ U'~(~)~ù~ 
P! ~~s~ 

instead, then: 

S p  « S + = ~  [SIE«Lul 

where (p s )+  acts on the lower (fl) indices. The last equation is a straightforward 
consequence of Eqs. (16) and of: 

P E ~  Œ = P E ;  - - l f l .  ( 1 9 )  

Hence, although shift operators are not projection operators in the strict sense, 
they are more useful than the standard projection operators because they can be 
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used to build irreducible basis vectors from arbitrary vectors [18, 19], while 
projection operators do not have this property. 

Substituting the primitive p-RDO in Eq. (17) by Eq. (15b) we can obtain 
another representation of the symmetry-adapted p-RDO. Making use of the 
orthogonality relation: 

f ( S ,  p) S~ U~(~)u v U~,(~)x~ = 6ss,3~z6~~ (20) p! "~ 

and of Eqs. (12) we get: 
S 

[s]~,«[ul ~. + (21) 
~ ß [ v ]  = B«,sM~Bp,sMv" 

M ~ - - S  

Equation (21) may also be used as a definition of the symmetry-adapted p-RDO. 
It has a very straightforward physical meaning, expe¢ially when combined with 
Eq. (15b). However, one has to remember that the p-RDOs act in the orbitäl 
spa¢e only. In parti¢ular, Eq. (21) should be interpreted in the sense of the 
spin-free formulation- the spin labels reflect the symmetry properties of the 
orbital-dependent operator. 

Combining Eqs. (12), (15), and (21) we get another set of useful relations. 
The first one allows one to express the primitive RDOs in terms of symmetry- 
adapted ones: 

p/2 f(S,p) 
[s]~«[u] (22) 

S ~ S r n i n  /~,v = 1 

The other equations determine transformation properties of the symmetry- 
adapted p-RDOs. In particular: 

B[s]~«[,] Is] ~,~«0,] (23a) 
• - ' # [ v ]  = ~ ß [ v ]  

f(S,p) 
= ~ rrp t~~ [s]~«[;.] (23b) ' - ' S  ~ «  ]21z at-'/~[v] 

2 = 1  

and 

[s]  it;,«M c~ä + [s] /;,«[,u] 
~ ß [ v ]  ~ = ~ .~#[v ]  

f(S,p) 

~ # [ ~ ]  • 

2 = 1  

Finally, Eq. (22) may be rewritten in a simple form as: 
p/2 f(S,p) 

PESt= Z Z [s]p:offv] ~ # [ v ]  • 
S = S m i  n v = 1 

(23c) 

(23d) 

(24) 

4 Products of p-RDOs 

Orte of the most important tasks in the theory of p-RDOs is expressing their 
products in terms of single p-RDOs [2, 13]. In the case when a symmetry- 
adapted p-RDO is multiplied by a primitive 1-RDO, we first apply Eqs. (13), 
(14), and (17) in order to express E~ and [S]E~f~~ in terms of the creation and 
annihilation operators. Then the standard commutation rules are applied. 
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Finally using the appropriate Clebsh-Gordan expansion (an analog of Eq. (3)), 
we obtain: 

ts]r<ù]~~ = 6(i e t )  t L~fl(a « i)[vl -~" ~ f l ( a  « i')[v] ) ~f l [v]  ~ a  S [S] K'«['u] " IS]pol'u] )" 

_~_[S+ 1/2] f~'~i[u'] -t.. IS--  1/2]r«i[/z"] (25) 
~ ~a[v'] ~ ~'~ ~a[v"] 

where 

{1, if i appears in Ô (26) 
6(i ~ t )  = O, otherwise ' 

B(a --+ i) means that index i has been replaced in Ô by a (the second term, with 
B(a ~ i') replacement, is present only if index i appears twice in t )  and «i/fla mean 
that the strings «/fl have been appended by i/a. Values of the counting indices 
#', v' (/~", v") depend upon the adopted convention in defining basis for the 
pertinent irreducible representation. Let us note that the orbital indices in Eq. (25) 
appear in a specific order: in [S +_+_ 1/2] operators the indices i and a are pur at the 
end of « and Ô strings respectively and in [S] operator index a replaces i in the 
B string. If another sequence of the indices is required, Eqs. (23) may be applied. 

The second-order primitive RDOs are related to the first-order ones by a 
simple relation [ 1]: 

EùiJ b = E~E~ - • j a E i b .  (27) 

Then, the corresponding formula for the appropriate products of the symmetry- 
adapted p-RDOs and the primitive 2-RDOs may be readily obtained by a 
twofold application of Eq. (25)• The same holds, of course, for the higher-order 
primitive RDOs. 

Equation (25) may be written in a more compact way as: 

[ S l V « [ " ] r i  : -  6(i ~ ~a[sl~=[ùl rs® 1/21~«;0~'1 (28) 
~/~[vl ~ a  e )  ~ ß { a - ~  i}[v] + ~ ß a [ v ' ] ,  

where {a ~ i} means that terms corresponding to all possible replacements of i 
by a taust be included (in this case the number of terms is equal to the 
occupation number of i in t ;  cf. Eq. (25)), and IS® 1/2] is a shorthand 
designation for the sum of [S + 1/2] and [S - 1/2] operators. Using this notation 
one can easily express products involving higher-order primitive p-RDOs. For 
p = 2 we have: 

• [ s ]  « [ ~ l  [S]K'°~[la]~'iJ~'~fl[v]'L'ab = O(i ~ f l)a(j  ~ t )  E f l { a + i , b ~ j } [ v  ] 

1/2]~ ;'aj[p'] , ~ I~'~[ S ®  1/2]EŒi~"] +Õ(i 6 fl)[s® ~/~{~~~}b[«j + 6 ( j  r . ,  ù{b-*j}a[v"]  

+ [S ® (1 G 0)] ~TŒiJ[#"] (29) 
~ flab[v'] 

where obvious generalizations of the previously defined symbols have been used. 
It is worthwhile to stress some very elose struetural similarity of Eqs. (25), (28), 
and (29) to the generalized Wick theorem for the primitive p-RDOs [2, 13]• In 
fact, the building principle expressed by these equations may be considered as 
another version of the generalized Wick theorem. 

5 Matrix elements of p-RDOs 

Several efficient algorithms of evaluation matrix elements of non-adapted one- 
and two-body RDOs are available, within frameworks of both unitary group 
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[1, 6] and symmetric group [3, 20] approaches. A recently proposed method of 
constructing the symmetry adapted p-th order reduced density matrices [2] took 
an advantage of these algorithms. In essence, the method consists of the 
following steps: 

(1) Expressing the symmetry adapted p-RDOs in terms of the primitive p-RDOs 
(using, e.g., Eq. (17)). 

(2) Reducing the p-RDO matrix elements ofp-RDOs in the 1-RDO and 2-RDO 
ortes (using p-particle generalizations of Eq. (27)). 

(3) Applying the standard algorithms to calculate the matrix elements of 1- 
RDOs and 2-RDOs. 

In this section equations for direct evaluation of the p-RDO matrix elements 
are presented. Since the symmetry-adapted p-RDOs transform according to 
irreducible representations of Sp, we found the symmetric group approach to be 
most appropriate for deriving the formulas. The strings of N orbital labels in the 
standard order are denoted A, F, O. The same strings in non-standard orders are 
denoted A', F', O', A", F", ~2", etc. In this section we allow some indices in the 
orbital label strings to appear twice. The repeated indices are referred to as 
doubles and their number in a given string is denoted d. 

5.1 Primitive p-RDOs 

Let E~ be a 1-RDO which does not affect the doubles in F and let us consider 
i Cj. Then: 

E~[F; SMT) = ~ lA'; SMT), if i ~ F and nj ~ 2 (30) 
~0, otherwise. 

If ~ is the permutation operator which acting on the orbital labels transform A' 
into A then, for i ~ F and nj ~ 2, due to Eqs. (12): 

E{{r; SMy > = I ~ - ' A ;  SMT > (31) 
f(S,N) 

= Z u~(~)~'1lA; SM~>. (32) 
,t 

Therefore: 

( (2;  S M f o  IE/i I1"; S M T  > = U ~  (~)~,o)~ Ao~( i  E r ) .  ( 3 3 )  

If E~ changes the number of doubles in F or if i =j ,  then the normalization 
factor in the resulting vector changes. For example, in the case of a two-electron 
singlet: 

j + _ ,)1/2/~ + 
Eiß(ii)oo -- ~ u ( O ) o  0 

j + __ 1/2 + 
Eiß(ij)oo - 2 B(jj)oo 

i + __ + 
Eiß(ii)oo -- 2B(i/)oo. 

In a general case, whenever E{ either creates or destroys a double, a factor 2 '/2 
appears (the case of E~ may be interpreted as a destruction and a subsequent 
creation of the same double, leading to the factor 2 m • 21/2). Then, Eq. (33) in a 
general case of 1-RDOs reads: 

<a; SMo, IE~Ir; SMe> = 2Ad/2uN(~)~~6Aa6(i ~ F) (34) 
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where Ad = 0, 1, 2 says how many times a double has been either created or 
annihilated. 

Let us generalize the above result to the case of a primitive p-RDO, p ~< N. 
Similar reasoning leads to the following equation: 

PE~ IF; SMy) = 2Aa/2[~-'A; SM~)6(fl ~ F) (35) 

where Ad, A, and ~ are the appropriate generalizations of the quantifies already 
defined. The right-hand side of Eq. (35) vanishes if any of the resulting 
occupation numbers in A violates the Pauli principle (is greater than 2). Hence, 
the corresponding matrix element may be written as: 

((2; SMo [PE} IF; SM7) -- 2Ad/2uN(~)ecobAOB(fi E I'). (36) 

5.2 Symmetry-adapted p-RDOs 

In order to calculate matrix elements of the symmetry-adapted p-RDOs, let us 
start with the following lemma ([19], Chap. 7-7): 

If N e S:, p ~ N, i.e., if N does not affect the last (N - p )  orbital labels in a 
string of N labels, then the matrices U~(N) are the direct sums of U~-(N). 

We can choose the representation so that Us~(N) is in explicit reduced (block 
diagonal) form. Let n(T, S) be the number of times U~(~) occurs in UsU(N) and 
let {i~, i z , . . . ,  i~} be the addresses of the UP(N) blocks in UN(~) sO that: 

uN(~)~+:.a+k = U~'(N)j,k if a = il, i » . . . ,  iù and j, k = 1, 2 . . . .  , f (T,p).  

(37) 

Then, according to the orthogonality theorem: 

i n 

f (T ,p)  Z U~(~)«kUsN(~)t,, = E 6:,~_qök,,ù_q. (38) 
P! ~e~Sp q = i  1 

The vector PE~«]F; SM? ) = eE~ _,~lr; SM~ > vanishes, unless F contains all 
the orbitals which appear in the fl string. Let .~-1 be a permutation which 
reorders F in such a way that the first p labels of the resulting string F '  coincide 
with fl. The Pauli principle implies that: 

B - '  [F; SM7) = e(~)lF; SMy) = IF'; ~ - ' SMy) .  (39) 

Then we have 

eEy«[F; SMT) = e(~)pEy«l F';-~-1SM]~). (40a) 

The last equation can be rewritten as: 

= e(~)PE~ [~F'; ~ - 1SM? ) (405) 

f ( S , N )  
N N p c¢ t .  = ~ Us(Y2)~~,Us(~),~ Ea[F,  SM2), (41) 

2 , 0  

In Eqs. (40), (41) the permutafion ~ e Sw while ~2 e S e ~ Sw. When acting on 
«, ~ e S e while acting on F' ,  ~2 e SN. However, the operator ~ acts on the first 
p labels of F '  only. 
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Multiplying the last equation by (f(T,p)/p!)UP(~)~v,  summing over all 
• Sp, and using Eqs. (38), (17) and (18), we get: 

/n 
t~J~«~llr;SMe>= Y Uff(~)~+q,rPE~rF';SM, iz+q). (42) • -" il[v] 

q = i  I 

Finally, the matrix element of  a symmetry-adapted p - R D O  may be expressed in 
terms of  the corresponding matrix elements of  the primitive p - R D O s  as: 

/n 
(f2; S M o  [rlp«[,2 v-  SMy ) = E U~ (a)~ + q~ ( 0 ;  SMco ]Z'E} I F'; SM, I~ + q). (43) ~fl[v] --, 

q = i  1 

By substitution of Eq. (36) for the primitive p - R D O  matrix element, Eq. (43) 
obtains a more symmetric form: 

(£2; ~'~~"" t[r]~«[ù] ]F; SM~) ~lrl tu I ~fl[v] 

i n 

2~d/~6(« • o)ö(fl • v ) a ( £ a  - « ,  r - fl)  y ,  ~ ~ + N = U S (  ) c o , 1 2 + q U s ( ~ ) v + q , T  ( 4 4 )  
q = i  1 

where O - elF - fl stand for the orbital label strings obtained by removing «/fl 
strings from f2/F. The operator N has been defined in Eq. (35) by considering 
the effect of  action of an RDO on a vector. Here the operators ~ and ~ play 
analogous role with respect to f2, Œ and F, fl strings, respectively. 

6 Concluding remarks 

The matrix elements o f p - R D O s  are equal to the p- th-order  density or transition 
matrix elements, i.e., to the coupling coefficients in general expressions for the 
matrices representing p-particle operators in N-fermion spin-adapted model 
spaces constructed from products of  orthonormal orbitals. In these spaces most  
of  methods of  approximate solving the Schrödinger equation are defined. There- 
fore the results of  this paper may be applied in many  methods used in quantum 
chemistry. Also relations between different kinds of  p -RDOs  and between their 
different representations (cf. Eqs. (15), (17), (21), (22), (28), (29)) may be useful 
in both transforming specific equations met in the methods mentioned above and 
in designing new methods. 
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